Force, work, energy and power

Matter and Mass

- Mass = Amount of matter in something
- Matter $=$ Anything that takes up space and has a mass

Force

- A Force is a push or a pull to get something to move
- Force $=$ Mass \times Acceleration (gravity)
- Gravity is always $10 \mathrm{~m} / \mathrm{s}^{2}$
- Force $=$ Mass $\times 10 \mathrm{~m} / \mathrm{s}^{2}$
- Units of Force are Newtons (N)
- Example of forces are gravity, electricity and magnetism
- Force can also be known as weight

Weight $=$ Mass \times Gravity ($10 \mathrm{~m} / \mathrm{s}^{2}$)

Iassac Newtown

Difference between mass and weight

- We have a mass and weight on earth but only a mass in space
- We only have a weight when we are exposed to gravity
- Calculate the weight of a book that has a mass of 1.5 kg ?

Weight $=$ Mass \times Gravity

- Weight $=1.5 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2}$
- Weight $=15 \mathrm{~N}$
- Calculate the weight of an object with mass 6 kg

Weight = Mass \times Gravity

- Weight $=6 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2}$
- Weight $=60 \mathrm{~N}$
- Calculate the force acting on a book of mass 1.2 kg
- Force $=$ Mass x Gravity
- Force $=1.2 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2}$
- Force = 12 N

Friction

- Friction is a force that tries to stop or slow down a moving object
- Friction - Can be reduced by smooth surfaces or by using a lubricant like oil or grease

Advantages of Friction

- Friction between our shoes and the ground stops our feet slipping backwards.
- Friction between car tyres and the road stops the car skidding

Disadvantages of Friction

- Wears brake pads on cars
- Need more fuels in cars

Experiment to investigate Hooke's Law

- Hooke's Law states that the extension of a spring is directly proportional to the force applied to it.
- You use a spring balance. This will tell you the force acting on the spring and also the extension of the spring

- Apply weights to the spring balance in an increasing order
- Record the weight and the distance on the spring
- Plot a graph of your results

Weight/g	0	49	98	147	196
Extension of Spring / cm	0	2	4	6	8

- Use the graph to estimate what force results in the spring extension of 7 cm
- Use the graph to estimate the spring extension when the force is 49 N
- Does this graph obey Hookes law?

Work
 - Work $=$ Force \times Distance

- The unit for work is Joules (J)
- A force of 100 N moves an object 50 m in the direction of the force. What is the work done by the force?
- Work $=$ Force \times Distance
- Work $=$ Force \times Distance
- Work $=100 \mathrm{~N} \times 50 \mathrm{~m}$
- Work $=5000 \mathrm{~J}$
- Calculate the work done when a force of 30 N moves an object 50 m
- Work $=$ Force \times Distance
- Work $=$ Force \times Distance
- Work $=30 \mathrm{~N} \times 50 \mathrm{~m}$
- Work $=1500 \mathrm{~J}$

Energy

- Energy is the ability to do work.
- So the unit for energy is Joules (J)

Power

- Power $=$ Work Done

Time Taken

- Unit of Power: Watts (W)
- Calculate the power when it takes a person 10 seconds to carry out 50 Joules of work
- Power = Work Done

Time Taken

- Power $=\frac{\text { Work Done }}{\text { Time Taken }}$
- Power $=\frac{50 \mathrm{~J}}{10 \mathrm{~s}}$

Power = 5 W

- A crane lifts a weight of 5000 N a vertical distance of 2 m in 4 s . What is the power needed?
- We need two things to calculate power
- Work and Time
- Time $=4$ seconds
- Work = ?
- Work $=$ Force \times Distance
- Work $=5000 \mathrm{~N} \times 2 \mathrm{~m}$
- Work $=10,000 \mathrm{~J}$
- Power $=$ Work Done

Time Taken

- Power = 10000 J

4 sec

- Power $=2,500$ Watts
- It takes a person 5 seconds to lift a weight of 4000 N vertically 5 m . What power is needed?
- Power = Work Done

Time Taken

- Work = ?
- Time $=5$ seconds
- Work $=$ Force \times Distance
- Work $=4000 \mathrm{~N} \times 5 \mathrm{~m}$
- Work $=20,000$ Joules
- Power $=\frac{20,000 \mathrm{~J}}{5 \mathrm{sec}}$
- Power = 4,000 Watts

