Speed, Acceleration and Velocity

Speed = Distance Time

Unit of Speed $=\mathrm{m} / \mathrm{s}$

A sprinter runs 100 m in 10 seconds. What is her average speed?

Speed = Distance Time

Speed $=\frac{100 \mathrm{~m}}{10 \mathrm{~s}}$

Speed $=10 \mathrm{~m} / \mathrm{s}$

Velocity
 - Velocity is just speed and direction

- A car travelled at a speed of $60 \mathrm{~m} / \mathrm{s}$ North
- It's Velocity is $60 \mathrm{~m} / \mathrm{s}$ North

Acceleration

- Acceleration = Change in Speed Time Taken

Units of Acceleration $=\mathrm{m} / \mathrm{s}^{2}$

- Calculate the acceleration of a car if it goes from a speed of $20 \mathrm{~m} / \mathrm{s}^{2}$ to $80 \mathrm{~m} / \mathrm{s}^{2}$ in 3 seconds

- Acceleration $=$ Change in Speed Time Taken
- Acceleration $=\underline{60 \mathrm{~m} / \mathrm{s}}$ 6 s
- Acceleration $=10 \mathrm{~m} / \mathrm{s}^{2}$

Speed/Distance Graphs

Information about a moving object can be given in a table and you can draw a graph of the motion.

Time s	1	2	3	4	5	6
Distance m	4	8	12	16	20	24

Draw a distance/time graph, use the time data as \times co-ordinates and the distance data as y co-ordinates on a graph.

Time s

- Calculate the speed of the moving object
- Speed = Distance Time
- Speed $=\underline{20 \mathrm{~m}}$ 5 s
- Speed $=4 \mathrm{~m} / \mathrm{s}$
- Use your graph to estimate the distance of the moving object at a speed of 3 seconds
- Use your graph to estimate the time it takes an object to move 20 meters
- Is the object accelerating in this graph? Explain your answer
- The object is not accelerating because you have a straight line graph, which indicates the speed is constant.
- Is the distance directly proportional to time? Explain your answer
- Yes distance and time are directly proportional to each other because when one increases the other increases.
- When time increases by 1 second, distance increases by 4 meters
- You also have a straight line graph

