### The Periodic Table and Metals



• The periodic table is where all the elements are listed

• Every element has its own symbol and has 2 numbers (mass and atomic number)

• It is divided into 2 sections – left side is metals and the right side is non-metals

• Rows are called periods

• Vertical columns are called groups

## Names and Symbols of Elements

- H Hydrogen Non Metal
- C Carbon Non Metal
- N Nitrogen Non Metal
- O Oxygen Non Metal
- S Sulfur

Non Metal

#### Properties on non-metals



Fig 24.6 Non-metals

#### Names and Symbols of Elements

| A  | Aluminium | Metal |
|----|-----------|-------|
| Fe | Iron      | Metal |
| Zn | Zinc      | Metal |
| Ag | Silver    | Metal |
| Au | Gold      | Metal |
| Pb | Lead      | Metal |
| Na | Sodium    | Metal |

#### Properties of metals

- Metals are **lustrous** (shiny)
- Metals are **malleable** (can be hammered into shape)
- Metals are **ductile** (can be stretched)
- Metals are usually **strong**, **hard solids** (exception sodium is soft)
- Metals are good conductors of heat and electricity
- Metals are sonorous (Make a loud ringing sound)

### **Physical Properties**



## AlloyAn Alloy is a mixture of metals

| Alloy              | Composition                  | Use                              |  |
|--------------------|------------------------------|----------------------------------|--|
| Brass              | Copper and zinc              | Musical instruments<br>Ornaments |  |
| Bronze             | Copper and tin               | Statues                          |  |
| Solder             | Lead and tin                 | Soldering                        |  |
| Mild steel         | Iron and carbon              | Building<br>reinforcement        |  |
| Stainless<br>steel | Iron, chromium and nickel    | Knives<br>Sinks                  |  |
| Alnico             | Aluminium, nickel and cobalt | Powerful magnets                 |  |

Fig 24.8 Alloys, their uses and composition

### Corrosion

# • Happens when a metal changes to its oxide by combining with oxygen from the air.

### RustingRusting is corrosion of iron

• Iron needs water and oxygen to rust

### Prevention of Rusting

- Rusting can be prevented by coating the iron in a material that stops either water or oxygen getting to the iron surface
- Greasing
- Painting
- Galvanising (coating with zinc)



Fig 24.11 Testing conditions for rusting

### Group 1 – Alkali Metals

#### • Group 1 elements are also called **The** Alkali Metals

 Called so because elements in this group react with water to from alkaline solutions (basic)

• One electron in their outer shell

• Have similar physical and chemical properties

• Soft, shiny metals

• But have to be stored in oil because they react with water and air

## Reactions of the alkali metals with oxygen

• Alkali metals react with oxygen to form metal oxides

• They lose their shiny appearance

## Reactions of the alkali metals with oxygen

**Examples**:

• Lithium + oxygen = Lithium oxide

• Sodium + oxygen = Sodium oxide

• Potassium + oxygen =

## Reactions of the alkali metals with water

#### **Reaction with water:**

- Metals in group 1 can react violently with cold water
- Fizzing occurs and a gas called hydrogen is released which catches fire

## Reactions of the alkali metals with water

#### **Example:**

Potassium + water = Potassium hydroxide
 + hydrogen

 Sodium + water = Sodium hydroxide + hydrogen

• Lithium + water =

### Group 2 – The Alkaline Earth Metals

- Group 2 elements are also called The Alkaline Earth Metals
- Much less reactive than group 1
- Similar physical and chemical properties
- 2 electrons in their outer shell

# Reactions of general metals with water

• Metals react with water and release hydrogen gas

### **Reactivity Series of metals**

- Calcium reacts vigorously with cold water
- Magnesium takes a couple of days to react with cold water
- Copper does not react with water

# Reactions of Metals with dilute acid

• Metals react with dilute hydrochloric acid to form salts and release Hydrogen gas

### **Reactivity Series of metals**

• Calcium reacts the quickest

• Magnesium reacts slower than Calcium

• Zinc reacts slowly

• Copper does not react



Fig 24.15 The reactivity of some metals with dilute hydrochloric acid



#### Decreasing



### Experiment to investigate the reaction between zinc and hydrochloric acid

- Drop dilute hydrochloric acid onto some zinc granules
- The zinc starts to fizz in the acid
- This fizz is Hydrogen gas being produced



#### Word equation:

o Zinc + hydrochloric acid →
 zinc chloride + hydrogen

### Chemical equation: Zn + HCL = ZnCl<sub>2</sub> + H<sub>2</sub>

### To test the gas for Hydrogen

 Put a glowing splint over the jar of hydrogen gas (collected when zinc was put into hydrochloric acid)

• The gas burns with a pop

### Group 7

### • Group 7 elements are also called The Halogens

### Group 8

• Group 8 elements are also called The Noble Gases

• Very unreactive because hey have a full outer shell

